

Variant Analysis Report

Eurofins Project ID: NG-12345

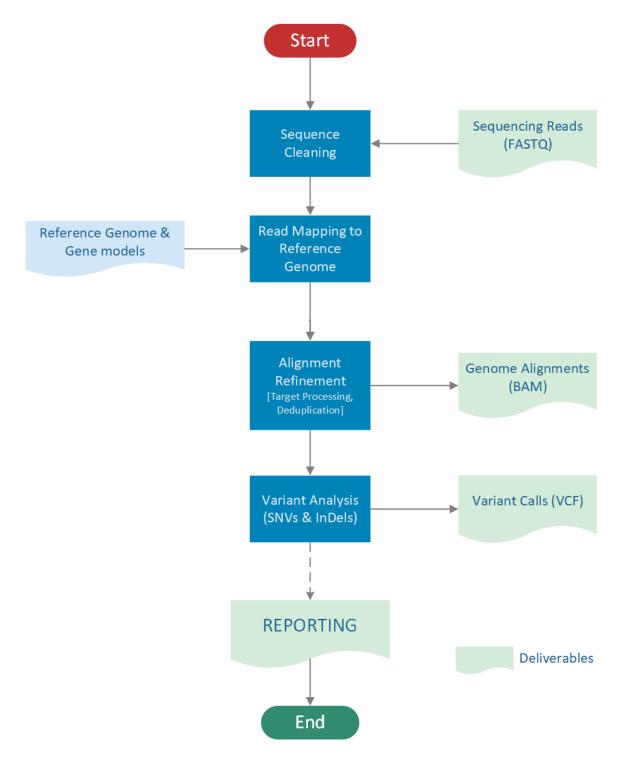
Date of Processing: 29 June, 2023

Pipeline: Variant Analysis Pipeline

Version: v2.6.8

This report is not a diagnostic / clinical report and is intended for Research Use Only.

Eurofins Genomics


Contents

1	Analysis Workflow 3			
2	Sequence Quality Control 2.1 Quality Control of raw sequencing data	4 4 4		
3	Mapping & Alignment3.1Alignment Statistics3.2Output Files and Descriptions	5 5 6		
4	Coverage Report	7		
5	Variant Calling Report5.1Variant Calling Metrics5.2Variant Consequence Metrics5.3VCF Fields5.4Output Files and Descriptions	10 10 10 10 11		
6	Relevant Programs	13		
7	Parameter settings	13		
8	Reference Database	13		
9	Sequence Data Used	14		
10	0 Deliverables 1			
11	References	15		

1 Analysis Workflow

Schematic diagram showing the main steps of the analysis method followed to perform the data analysis.

2 Sequence Quality Control

2.1 Quality Control of raw sequencing data

Raw sequencing data are preprocessed to generate clean data for downstream analysis.

Quality of raw sequencing data is checked and filtered to retain only high quality bases by performing adapter trimming, quality filtering and per-read quality pruning. Quality is interpreted as the probability of an incorrect base call or, equivalently, the base call accuracy. The quality score is logarithmically based, so a quality score of 10 reflects a base call accuracy of 90%, but a quality score of 20 reflects a base call accuracy of 90% and a quality score of 30 reflects a base call accuracy of 99.9%. These probability values are the results from the base calling algorithm and depend on how much signal was captured for the base incorporation.

Sequencing reads representing reads with quality score at least Q30 is above 90% is of very good quality. For a reasonably good sample source material, according to Illumina specifications, one could expect >75% reads with at least Q30 Phred quality.

Raw sequencing data is processed using fastp[1] software to remove poor quality bases (below Phred Quality 20) using the sliding window approach where in if the average quality of the bases drops below Q20, those bases are removed from the reads. After quality trimming, program checks for presence of any adapters in the reads and removes from the reads. Further, shorter reads which are <30bp length are also removed to retain only high quality sequencing reads for each sample in the analysis. In case of paired-end reads, both the sequencing reads which pass the QC criteria are considered for downstream analysis.

After QC processing, QC metrics such as Q30 reads and GC content can be used to assess the sequencing and sample quality across the samples.

2.2 Read Statistics

- Table 1: Sequence Quality Metrics overview. For each sample, the following QC metrics are provided:
 - Sample Name: name of the sample.
 - Total Raw Reads: the total number of raw sequencing reads generated for the sample.
 - Total HQ Reads: the total number of high quality reads after sequence cleaning and filtering.
 - HQ Bases (Q30): Percentage of high quality bases having at least phred quality 30.
 - GC Content: GC content in percentile of high quality sequencing reads.
 - Mean Read Length (bp): Average read length in bp of high quality sequencing reads.
 - HQ Reads %: High Quality Reads percentage.

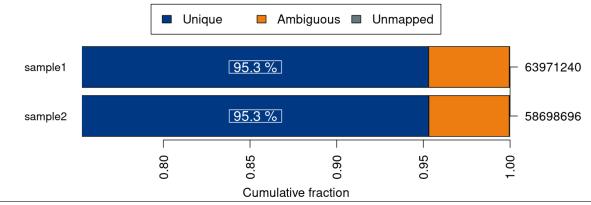
ID	Sample Name	Total Raw Reads	Total HQ Reads	HQ Bases (Q30)	GC Content	Mean Read Length (bp)	HQ Reads %
1	sample1	65.09 M	63.97 M	90.71%	49.04%	148	98.28%
2	sample2	59.66 M	58.7 M	90.26%	50.12%	147	98.39%

5

3 Mapping & Alignment

Mapping to the reference sequence / database is done using BWA[2] run through Sentieon[4] framework.

3.1 Alignment Statistics


Please note that the mapping efficiency depends on the accuracy of the reference and the quality of sequence reads.

- Mapping statistics overview. For each sample, the following statistics are provided:
 - Total HQ Reads: The total number of reads after filtering the samples.
 - Mapped Reads: Reads mapped to reference.
 - Unique Reads: Reads mapped to exactly one site on the reference.
 - On-target Reads: Uniquely mapped reads that mapped to a target region with +/- 100 bp tolerance.
 - Deduplicated Reads: Reads with PCR duplicates removed.
 - Mean Coverage: Average read coverage of the reference sequence.
 - Mean Coverage (w/o duplicates): Average read coverage of the reference sequence after duplicate removal.

Percentage of reads in category Unique is calculated based on the number of reads mapping to entire reference. Percentage of reads in category On-target is calculated based on the number of reads mapped uniquely. Percentage of reads in category Deduplicated (reads without duplicates) is calculated based on the number of on-target reads.

• Table 2: Mapping metrics per sample.

1 sample1 63.97M 63.94M 60.97M 51.78M 38.32M 116.12x 85.70x 2 sample2 58.70M 58.67M 55.95M 47.77M 35.43M 111.30x 82.42x	I	D	Sample	Total HQ Reads	Mapped Reads	Unique Reads	On-target Reads	Deduplicated Reads	Coverage	Mean Coverage (w/o duplicates)
2 sample? 58 /UM 111 30x 82 42x	-	1	sample1	63.97M			• • • • • • •		116.12x	85.70x
	2	2	sample2	58.70M	58.67M (99.95%)	55.95M (95.32%)	47.77M (85.38%)	35.43M (74.16%)	111.30x	82.42x

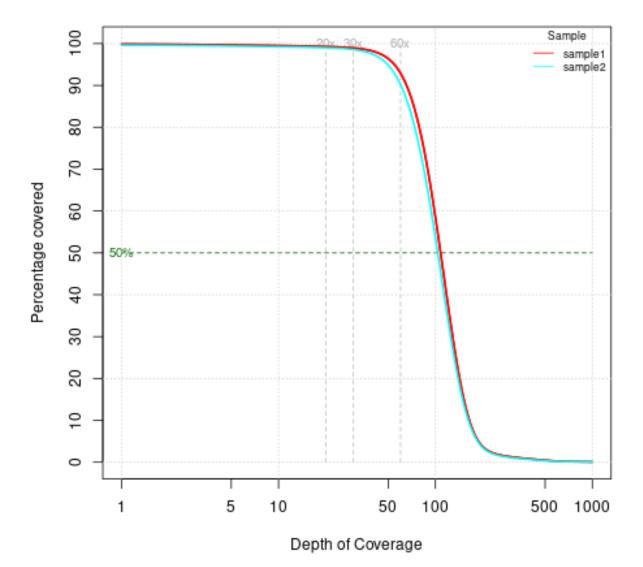
• Figure 1 : Summary of alignment results. For each sample, the fraction of uniquely mapped, nonuniquely mapped (ambiguous) and unmapped reads relative to the total number of reads per sample (right y-axis) is shown.

3.2 Output Files and Descriptions

The following files have been generated for each sample:

- **SAMPLE.REFERENCE.alignment.bam**: These files contain the results of the read mapping in BAM format. The *.bam files are sorted by alignment positions and contain mapped as well as unmapped reads. Use "samtools view -F 4 in.bam > out.sam" to extract mapped reads. Use "samtools view -f 4 in.bam > out.sam" to extract unmapped reads.
- **SAMPLE.REFERENCE.alignment.bam.bai**: The index files of *.bam files are needed e.g. for the visualization with IGV.

4 Coverage Report


Depth of coverage has been calculated for each sample.

- · Coverage metrics overview. For each sample the following metrics are provided:
 - Mean Coverage: Average read coverage of the reference sequence.
 - Uniformity (0.2x avg.): Sample(s) with high uniformity usually have >90% covered at 0.2x average coverage (e. g. 20x for 100x average coverage)
 - Yx: Percentage of reference covered with minum Y reads.
- Table 3: Depth of coverage summary.

ID	Sample	Mean Coverage	Uniformity (0.2x avg.)	2x	5x	10x	20x	50x	100x	120x
1	sample1	116.12	23x (99.0%)	99.8	99.7	99.5	99.3	96.4	58.5	37.8
2	sample2	111.30	22x (99.0%)	99.6	99.4	99.2	99.0	94.8	53.6	34.1

The coverage plot shows the base coverage distribution of the aligned data. Depth of coverage is plotted on X-axis and the percentage of the respective reference covered is plotted on Y-axis. The shape of the curve indicates the uniformity of the reference coverage in the samples analysed.

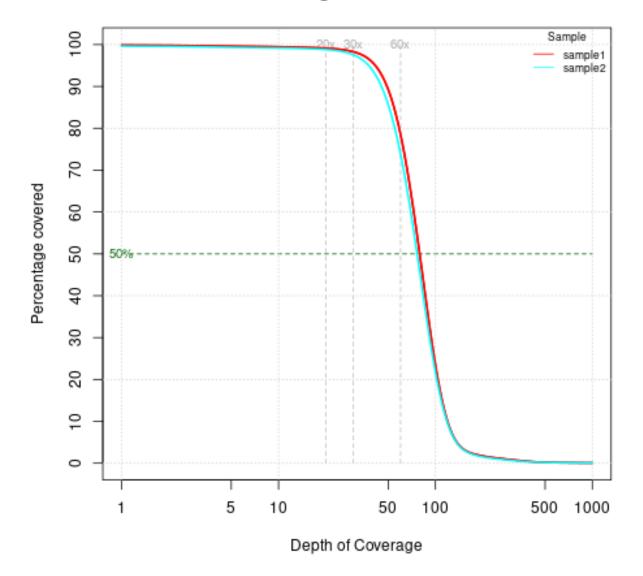

Coverage Distribution

Figure 2 : Coverage plot.

• Table 4: Depth of coverage summary after duplicate removal.

ID	Sample	Mean Coverage	Uniformity (0.2x avg.)	2x	5x	10x	20x	50x	100x	120x
1	sample1	85.70	17x (99.0%)	99.8	99.6	99.5	99.1	89.3	23.5	9.7
2	sample2	82.42	16x (99.0%)	99.5	99.3	99.2	98.8	85.7	21.7	9.3

Coverage Distribution

Figure 3 : Coverage plot (excluding duplicated fragments).

5 Variant Calling Report

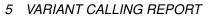
The SNP and InDel calling is done using Sentieon's DNAscope[4].

Variants detected are annotated based on their gene context using VEP[3]. More information about annotations produced by VEP can be found here: https://www.ensembl.org/info/docs/tools/vep/index.html

Please note that the variants are NOT VALIDATED and are provided as they are reported from the programs mentioned above. Therefore it is highly recommended to inspect the variants thoroughly and validate using alternative methods. It is recommended to use filter PASS variants for further downstream analysis. **Note:** depending on the input DNA quality and genomic region limit of detection might be > 1%.

5.1 Variant Calling Metrics

• Table 5: Variant metrics per sample.


ID	Sample	Total	SNP	InDel	Known	Unknown
1	sample1	140,218	122,461	17,757	139,068	1,150
2	sample2	130,948	115,127	15,821	129,767	1,181

5.2 Variant Consequence Metrics

• Table 6: Count of most severe Variant Consequences per sample.

Consequence	sample1	sample2
splice_donor_variant	77	73
splice_acceptor_variant	77	69
stop_gained	159	168
frameshift_variant	418	416
stop_lost	25	25
start_lost	45	47
inframe_insertion	209	212
inframe_deletion	237	241
protein_altering_variant	4	5
missense_variant	14095	13931
splice_region_variant	2716	2669
synonymous_variant	13029	12905
stop_retained_variant	18	16
coding_sequence_variant	4	3
5_prime_UTR_variant	3778	3702
3_prime_UTR_variant	6041	5542
non_coding_transcript_exon_variant	2637	2404
intron_variant	90410	82364
upstream_gene_variant	11	8
downstream_gene_variant	10	9
TFBS_ablation	1	0
TF_binding_site_variant	790	767
regulatory_region_variant	2119	2095
intergenic_variant	3308	3277

5.3 VCF Fields

Field	Description
AC	Allele count in genotypes, for each ALT allele, in the same order as listed
AD	Allelic depths for the ref and alt alleles in the order listed
AF	Allele frequency, for each ALT allele, in the same order as listed
AN	Total number of alleles in called genotypes
BaseQRankSum	Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities
CSQ	Consequence annotations from Ensembl VEP. Format: Allele Consequence IMPACT SYMBOL Gene Feature_type Feature BIOTYPE EXON INTRON HGVSc HGVSp cDNA_position CDS_position Protein_position Amino_acids Codons Existing_variation DISTANCE STRAND FLAGS VARIANT_CLASS SYMBOL_SOURCE HGNC_ID CANONICAL MANE_SELECT MANE_PLUS_CLINICAL TSL APPRIS CCDS ENSP SWISSPROT TREMBL UNIPARC UNIPROT_ISOFORM REFSEQ_MATCH REFSEQ_OFFSET GENE_PHENO SIFT PolyPhen DOMAINS miRNA HGVS_OFFSET AF AFR_AF AMR_AF EAS_AF EUR_AF SAS_AF AA_AF EA_AF gnomAD_AF gnomAD_AFR_AF gnomAD_AMR_AF gnomAD_ASJ_AF gnomAD_EAS_AF gnomAD_FIN_AF gnomAD_NFE_AF GLIN_SIG SOMATIC PHENO PUBMED MOTIF_NAME MOTIF_POS HIGH\ INF\ POS MOTIF\ SCORE\ CHANGE TRANSCRIPTION\ FACTORS
ClippingBankSum	Z-score From Wilcoxon rank sum test of Alt vs. Ref number of hard clipped bases
DB	dbSNP membership
DP	Combined depth across samples
DP	Read depth
ExcessHet	Phred-scaled p-value for exact test of excess heterozygosity
FS	Phred-scaled p-value using Fisher's exact test to detect strand bias
GQ	Genotype quality
GT	Genotype
InbreedingCoeff	Inbreeding coefficient as estimated from the genotype likelihoods per-sample when compared against the Hardy-Weinberg expectation
MLEAC	Maximum likelihood expectation (MLE) for the allele counts, for each ALT allele, in the same order as listed
MLEAF	Maximum likelihood expectation (MLE) for the allele frequency, for each ALT allele, in the same order as listed
MQ	RMS mapping quality
MQRankSum	Z-score From Wilcoxon rank sum test of Alt vs. Ref read mapping qualities
PGT	Physical phasing haplotype information, describing how the alternate alleles are phased in relation to one another
PID	Physical phasing ID information, where each unique ID within a given sample (but not across samples) connects records within a phasing group
PL	The phred-scaled genotype likelihoods rounded to the closest integer
QD	Variant Confidence/Quality by Depth
	n Z-score from Wilcoxon rank sum test of Alt vs. Ref read position bias
SOR	Symmetric Odds Ratio of 2x2 contingency table to detect strand bias

5.4 Output Files and Descriptions

The following files have been generated for each sample:

- SAMPLE.variants.vcf.gz: Sample-wise variant calls in compressed VCF format.
- **SAMPLE.variants.vcf.gz.tbi**: Index file for sample-wise variant calls in compressed VCF format. This file is needed by different tools when working with vcf.gz files.
- SAMPLE.variants.passed.vcf.gz: Filter passed sample-wise variant calls in compressed VCF format.

- **SAMPLE.variants.passed.vcf.gz.tbi**: Index file for filter passed sample-wise variant calls in compressed VCF format. This file is needed by different tools when working with vcf.gz files.
- **SAMPLE.variants.passed.csv**: Filter passed sample-wise variant call in CSV format (can be opened in Excel).
- **SAMPLE.variants.passed.vcf_summary.html**: Detailed information about variant annotation with (VEP / snpEff).

6 Relevant Programs

• Table 8: The programs/softwares used in this pipeline.

Tool	Version	Description
bamutil	1.0.14	BamUtil is a repository that contains several programs that perform operations on SAM/BAM files
BCFtools	1.15	BCFtools is a set of utilities that manipulate variant calls in the Variant Call Format (VCF) and its binary counterpart BCF
BWA	0.7.17	BWA is a software package for mapping low-divergent sequences against a large reference genome
fastp	0.20.0	Fastp is a tool designed to provide fast all-in-one preprocessing for FastQ files.
R	4.1.3	R is a programming language and environment for statistical computing.
sambamba	0.6.8	Sambamba is a high performance modern robust and fast tool (and library), for working with SAM and BAM files.
Sentieon	202112.02	Sentieon® provides complete solutions for secondary DNA/RNA analysis for a variety of sequencing platforms, including short and long reads.
snpEff	4.3	SnpEff is a genetic variant annotation and effect prediction toolbox.
VEP	104.3	VEP determines the effect of your variants.

7 Parameter settings

Following parameter have been used for each step:

- · Alignment Classification: not unmapped and not supplementary and not secondary_alignment
- Alignment: -k 19 -w 100 -m 50
- Coverage: -count_type 0 -omit_base_output -cov_thresh 2 -cov_thresh 5 -cov_thresh 10 -cov_thresh 20 -cov_thresh 30 -cov_thresh 100 -cov_thresh 120 -histogram_low 1 -histogram_high 1000 histogram_bin_count 999 -ignore_del_sites
- · Multiqc: default
- Sequence Cleaning: -detect_adapter_for_pe -average_qual 20 -length_required 50 -qualified_quality_phred 20
- · Variant Calling: default
- Vep: -use_given_ref -everything -sift p -polyphen p -no_intergenic -distance 1 -pick -hgvs -refseq -af_1kg -af_gnomad

8 Reference Database

• Table 9: Information about the reference database.

Тад	Value
Genome Name	Homo sapiens
Genome Version	hg38
Genome Source	UCSC
Genome Size	3.2 gb

9 Sequence Data Used

• Table 10: The samples used in this pipeline.

No	Sample	File Name
1	sample1	NG-12345_sample1_lib123572_1234_2_1.fastq.gz
		NG-12345_sample1_lib123572_1234_2_2.fastq.gz
2	sample2	NG-12345_sample2_lib123694_1234_2_1.fastq.gz
		NG-12345_sample2_lib123694_1234_2_2.fastq.gz

10 Deliverables

For details about the files delivered, please refer to each results section.

- NG-12345.Variant_Analysis_Report.pdf: This report.
- SAMPLE.REFERENCE.alignment.bam: Mapping & Alignment files.
- NG-12345.alignment_index_files.tar.gz: Contains all .bam.bai files generated by Mapping & Alignment step.
- NG-12345.variant_files.tar.gz: Contains all files generated by Variant Calling step.

11 References

[1] Shifu Chen, Yanqing Zhou, Yaru Chen, and Jia Gu. 2018. fastp: an ultra-fast all-in-one FASTQ preprocessor. *Bioinformatics* 34, 17 (September 2018), i884–i890. DOI:https://doi.org/10.1093/bioinformatics/bty560

[2] Heng Li and Richard Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. *Bioinformatics (Oxford, England)* 25, 14 (July 2009), 1754–1760. DOI:https://doi.org/10.1093/bioinformatics/btp324

[3] William McLaren, Laurent Gil, Sarah E. Hunt, Harpreet Singh Riat, Graham R. S. Ritchie, Anja Thormann, Paul Flicek, and Fiona Cunningham. 2016. The ensembl variant effect predictor. *Genome Biology* 17, 1 (June 2016), 122. DOI:https://doi.org/10.1186/s13059-016-0974-4

[4] Sentieon. 2021. Sentieon provides complete solutions for secondary dna/rna analysis for a variety of sequencing platforms, including short and long reads. Sentieon. Retrieved from https://www.sentieon.com/