Data Analysis Report

Project / Study: GEN190101_A
Project specification: CRISPR_NHEJ_Analysis_Example
Date: May 3, 2019

Table of Contents

1 Analysis of CRISPR/Cas9 gene editing events 1
1.1 Project Details 1
1.2 Results 2
1.2.1 Editing efficiency 2
1.2.2 NHEJ-induced Variants 3
1.2.2.1 Edited_Sample_1 3
1.2.2.2 Edited_Sample_2 9
1.2.2.3 Control_Sample 15
1.2.3 FASTQ Read Statistics 17
1.2.4 Preprocessing and Mapping 18
1.2.5 Coverage Statistics 19
1.3 Methods 20
1.4 Deliverables 21

1 Analysis of CRISPR/Cas9 gene editing events

The CRISPR/Cas9 system has been widely adopted for targeted genome editing in a wide variety of cells. The Cas9 nuclease can be targeted using a single-guide RNA (sgRNA) to create double-strand breaks (DSBs) at specific sites in the chromosomal DNA. Hereby, the presence of a protospacer adjacent motif (PAM) is mandatory to induce a DSB. The DSB is induced 3-4bp upstream of the PAM. Two major pathways are available that repair DSBs: the Homology-Directed Repair (HDR) pathway repairs DSBs in presence of a homologous donor sequence, and the the Non-Homologous End Joining (NHEJ) pathway that joins DNA ends without homology requirements. A repair by the NHEJ pathway is error-prone and often results in small indels (1-10bp) which can disrupt the targeted locus.

1.1 Project Details

Assay ID: Example
List of target regions:

- Target_1
- Target_2

Table 1: List of edited samples:

Sample name	Replicate name	Associated control sample
Edited_Sample_1	Edited_Sample_1	Control_Sample
Edited_Sample_2	Edited_Sample_2	Control_Sample

Table 2: List of wildtype samples:

Sample name	Replicate name
Control_Sample	Control_Sample

1.2 Results

1.2.1 Editing efficiency

Table 3: Editing efficiency per sample and target region. The listed numbers are the summed relative frequencies of identified variants.

Sample	Target_1	Target_2
Edited_Sample_1	76.8%	86.5%
Edited_Sample_2	76.5%	86.4%

1.2.2 NHEJ-induced Variants

1.2.2.1 Edited_Sample_1

Associated control: Control_Sample
Table 4: Edited alleles frequency table for sample Edited_Sample_1 region Target_1. Aligned Sequence: The observed read sequence, aligned to the reference. Reference Sequence: The reference sequence. \%Reads: The fraction of reads with same sequence. \#Reads: The number of reads with the same sequence. Please note: All alleles with variants that are close to the expected cut-site are listed here. However, only the 30 most frequent alleles are listed here. The full list of alleles is delivered as a separate file.

Target:

Aligned Sequence
aATTTTTTTTATA------GCCTTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCT-----TTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTT-CCTTGTTCCGATTCAGTCAT AATTTTTTTTTATAGCCTTTGACCTTGTTCCGATTCAGTCA TTTTTTTTTATAGCCTTTGGGCCTTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTG-CTTGTTCCGATTCAGTCAT AATTTTTTTTATAGCCTTTGCCCTTGTTCCGATTCAGTCA aATTTTTTTTATAGCCTTTGGACCTTGTTCCGATTCAGTC AATTTTTTTTATAGCCTTTG--TTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTGTCCTTGTTCCGATTCAGTCA atTTTTTTTATAGCCTTTGGCCTTGTTCCGATTCAGTCAT

TTTTTTTATAGCCTTTGAGGCCTTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTGAACCTTGTTCCGATTCAGTC AATTTTTTTTATAGCCTTTG---TGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTGGGACCTTGTTCCGATTCAGT aATTTTTTTTATAGCCTT--CCTTGTTCCGATTCAGTCAT aATTTTTTTTAT

TTTTTTTATAGCCTTTGGGGCCTTGTTCCGATTCAGTCAT -TGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTGGAACCTTGTTCCGATTCAGT aATTTTTTTTATAGCCT---CCTTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTG--------CGATTCAGTCAT TTTTTTTTATAGCCTTTGAGCCTTGTTCCGATTCAGTCAT ----------------------CCTTGTTCCGATTCAGTCAT AATTTTTTTTATAGCCTTTGTCCCTTGTTCCGATTCAGTC aATTTTTTTTATAGC-----CCTTGTTCCGATTCAGTCAT AATTTTTTTTATAGCCTTTGGCCCTTGTTCCGATTCAGTC aATTTTTTTTATAGCCTTTGACCCTTGTTCCGATTCAGTC AATTTTTTTTATAGCCTTTGCCCCTTGTTCCGATTCAGTC

Target_1

Reference Sequence	\%Reads	\#Reads
AATтTтTTTTATAGCctтTccctrctrcccaitccactcat	15.0%	833

аАтттттттатассстттсссттсттссааттсаєтсат $\quad 6.2 \% \quad 345$

aAtтrtтtтtataccctrtc-cctrctrccaatcaacta $\quad 1.0 \% \quad 54$
atrtrtrtrataccctrt-ccctractcccattcagtcat $\quad 0.9 \%$ 49

аАттттттTтатассстттссттесттссаттсастсат $\quad 0.6 \% \quad 31$

aAтtrtтtтtataccctrtc---cctrctrccaatcant $0.5 \% \quad 26$

тттtтtтtataccctrt--Gcctтgтtcccattcagtcat $\quad 0.4 \% \quad 23$
anttrtittratacccttcccctigtcccaitcagtcat $\quad 0.4 \% \quad 21$

аАттттттттатасссттт--ссттеттсссаттсаятс $\quad 0.3 \% \quad 19$

SUM $\quad 76.8 \% \quad 4256$

Figure 1: Mutation rate and frameshift classification plots for sample Edited_Sample_1 region Target_1. Left: The cumulative fraction of mutations at each position of the target region is shown.Right: The proportion of frameshift and in-frame mutations, as well as of mutations outside of coding region(s) is shown.

bold Substitutions

- Insertions

Deletions
--- Predicted cleavage position

Figure 2: Alleles around cutsite for sample Edited_Sample_1 region Target_1. Please note that only alleles with a frequency of at least 0.2% and at most 50 alleles are shown.

Table 5: Edited alleles frequency table for sample Edited_Sample_1 region Target_2. Aligned Sequence: The observed read sequence, aligned to the reference. Reference Sequence: The reference sequence. \%Reads: The fraction of reads with same sequence. \#Reads: The number of reads with the same sequence. Please note: All alleles with variants that are close to the expected cut-site are listed here. However, only the 30 most frequent alleles are listed here. The full list of alleles is delivered as a separate file.

Target:

Target_2

Reference Sequence	\%Reads	\#Reads
	28.0\%	3159
	11.0\%	1243
	2.4\%	272
	1.6\%	185
ттTTTTTTATAGCctit--Gcctrectcccattcait	1.4\%	163
Aattrttrtanaccittc-cctrctrccaitcactica	1.3\%	149
Aatтtrtitrataccittc-cctrcitccaitcactica	1.3\%	142
	1.1\%	129
	0.9\%	107
Aattrttrtaitaccitto--cctrectccaattcagt	0.9\%	106
	0.9\%	104
	0.9\%	98
	0.8\%	88
Aattrttrtaitaccitto--cctrctrccaatcaatc	0.7\%	82
	0.7\%	75
	0.6\%	70
	0.6\%	67
	0.5\%	56
аиттTTTTTTATAGCctrtccctratrccantcagtaat	0.5\%	54
	0.5\%	52
	0.5\%	51
	0.4\%	46
	0.4\%	46
Aattrttrtaitaccittc-cctrctrccaitcaatca	0.4\%	46
	0.4\%	45
	0.4\%	45
АатттTтTTTATAGCcrttccctrcitccgattcactcai	0.4\%	43
	0.4\%	43
	0.4\%	41
	0.4\%	41
...		
	86.5\%	974

Figure 3: Mutation rate and frameshift classification plots for sample Edited_Sample_1 region Target_2. Left: The cumulative fraction of mutations at each position of the target region is shown.Right: The proportion of frameshift and in-frame mutations, as well as of mutations outside of coding region(s) is shown.

bold Substitutions

Insertions

Deletions
--- Predicted cleavage position
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT-Reference

Figure 4: Alleles around cutsite for sample Edited_Sample_1 region Target_2. Please note that only alleles with a frequency of at least 0.2% and at most 50 alleles are shown.

1.2.2.2 Edited_Sample_2

Associated control: Control_Sample
Table 6: Edited alleles frequency table for sample Edited_Sample_2 region Target_1. Aligned Sequence: The observed read sequence, aligned to the reference. Reference Sequence: The reference sequence. \%Reads: The fraction of reads with same sequence. \#Reads: The number of reads with the same sequence. Please note: All alleles with variants that are close to the expected cut-site are listed here. However, only the 30 most frequent alleles are listed here. The full list of alleles is delivered as a separate file.

Target:

Aligned Sequence
aATTTTTTTTATA------GCCTTGTTCCGATTCAGTCAT AATTTTTTTTATAGCCT-----TTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTT-CCTTGTTCCGATTCAGTCAT tTtTtTtTATAGCCTTTGGGCCTTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTGACCTTGTTCCGATTCAGTCA ATTTTTTTTTATAGCCTTTGGCCTTGTTCCGATTCAGTCAT AATTTTTTTTATAGCCTTTGCCCTTGTTCCGATTCAGTCA aATTTTTTTTATAGCCTTTG-CTTGTTCCGATTCAGTCAT AATTTTTTTTATAGCCTTTGGACCTTGTTCCGATTCAGTC aATTTTTTTTATAGCCTTTGAACCTTGTTCCGATTCAGTC aATTTTTTTTATAGCCTTTG--TTGTTCCGATTCAGTCAT aATtTTTTTTATAGCCTT--CCTTGTTCCGATTCAGTCAT ---------------------GCCTTGTTCCGATTCAGTCAT TTTTTTTTATAGCCTTTGGGGCCTTGTTCCGATTCAGTCAT tTtTtTtTATAGCCTTTGAGCCTTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTGGGACCTTGTTCCGATTCAGT AATTTTTTTTATAGCCTTTGTCCTTGTTCCGATTCAGTCA
aATTTTTTTTATAGCCTTTG---TGTTCCGATTCAGTCAT aATTTTTTTTATAGCCT---CCTTGTTCCGATTCAGTCAT TTTTTTTATAGCCTTTGAGGCCTTGTTCCGATTCAGTCAT AATTTTTTTTATAGCCTTTG--------CGATTCAGTCAT aATTTTTTTTATAGCCTTTGAAACCTTGTTCCGATTCAGT aATtTTTTTTATAG
AA----TTTTATA------GCCTTGTTCCGATTCAGTCAT aATtTTTTTTATAGCCTTTGGCCCTTGTTCCGATTCAGTC aATtTTTTTTATAGCCTTTGGGGCCCTTGTTCCGATTCAG aATTTTTTTTATAGCCTTTG-
aATTTTTTTTATAGCCTTTGTTCCTTGTTCCGATTCAGTC aATTTTTTTTATAG--------------CCGATTCAGTCAT

Target_1

Reference Sequence	\%Reads	\#Reads
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	14.7\%	792
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	6.3\%	340
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	4.0\%	217
TTTTTTTTATAGCCTTT--GCCTTGTTCCGATTCAGTCAT	2.6\%	140
AATTTTTTTTATAGCCTTTG-CCTTGTTCCGATTCAGTCA	2.3\%	126
ATTTTTTTTATAGCCTTT-GCCTTGTTCCGATTCAGTCAT	2.0\%	109
AATTTTTTTTATAGCCTTTG-CCTTGTTCCGATTCAGTCA	1.7\%	94
aATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	1.7\%	90
AATTTTTTTTATAGCCTTTG--CCTTGTTCCGATTCAGTC	1.5\%	79
AATTTTTTTTATAGCCTTTG--CCTTGTTCCGATTCAGTC	1.5\%	78
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	1.4\%	76
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	1.0\%	55
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	0.9\%	48
TTTTTTTATAGCCTTT---GCCTTGTTCCGATTCAGTCAT	0.8\%	44
TTTTTTTTATAGCCTTT--GCCTTGTTCCGATTCAGTCAT	0.8\%	43
AATTTTTTTTATAGCCTTTG---CCTTGTTCCGATTCAGT	0.6\%	34
aATTTTTTTTATAGCCTTTG-CCTTGTTCCGATTCAGTCA	0.6\%	34
aATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	0.6\%	33
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	0.6\%	31
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	0.6\%	31
TTTTTTTATAGCCTTT---GCCTTGTTCCGATTCAGTCAT	0.5\%	27
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	0.4\%	24
AATTTTTTTTATAGCCTTTG---CCTTGTTCCGATTCAGT	0.4\%	22
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	0.4\%	22
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	0.3\%	18
AATTTTTTTTATAGCCTTTG--CCTTGTTCCGATTCAGTC	0.3\%	17
AATTTTTTTTATAGCCTTTG----CCTTGTTCCGATTCAG	0.3\%	17
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	0.3\%	17
aATTTTTTTTATAGCCTTTG--CCTTGTTCCGATTCAGTC	0.3\%	16
AATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT	0.3\%	16
\ldots	\ldots	\ldots
	76.5\%	4110

Figure 5: Mutation rate and frameshift classification plots for sample Edited_Sample_2 region Target_1. Left: The cumulative fraction of mutations at each position of the target region is shown.Right: The proportion of frameshift and in-frame mutations, as well as of mutations outside of coding region(s) is shown.

bold Substitutions

Insertions
Deletions
--- Predicted cleavage position

Figure 6: Alleles around cutsite for sample Edited_Sample_2 region Target_1. Please note that only alleles with a frequency of at least 0.2% and at most 50 alleles are shown.

Table 7: Edited alleles frequency table for sample Edited_Sample_2 region Target_2. Aligned Sequence: The observed read sequence, aligned to the reference. Reference Sequence: The reference sequence. \%Reads: The fraction of reads with same sequence. \#Reads: The number of reads with the same sequence. Please note: All alleles with variants that are close to the expected cut-site are listed here. However, only the 30 most frequent alleles are listed here. The full list of alleles is delivered as a separate file.

Target:

AATTTTTTTTATAGCCTTTG--TTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTGAACCTTGTTCCGATTCAGTC aATTTTTTTTATAGCCTTTGGACCTTGTTCCGATTCAGTC aATTTTTTTTATAG--------------CCGATTCAGTCAT atTITTTTTATAGCCTTTGGCCTTGTTCCGATTCAGTCAT aATTTTTTTTTATAG
\qquad
-----------------------CTTGTTCCGATTCAGTCAT AATTTTTTTTATAGCCTT--CCTTGTTCCGATTCAGTCAT ------------------------TTGTTCCGATTCAGTCAT AATTTTTTTTATAGCCTTTG--------CGATTCAGTCAT TTTTTTTATAGCCTTTGGGGCCTTGTTCCGATTCAGTCAT AATTTTTTTTATAGCC

TTTTTTTTATAGCCTTTGAGCCTTGTTCCGATTCAGTCAT
\qquad
\qquad
aATTTTTTTTATAGCCT---CCTTGTTCCGATTCAGTCAT aATTTTTTTTATAGCCTTTGGGACCTTGTTCCGATTCAGT
\qquad
 AATTTTTTTTATAGCCTTTG---TGTTCCGATTCAGTCAT SUM

Target_2

Reference Sequence	\%Reads	\#Reads
	28.8\%	3185
	10.5\%	1158
	2.4\%	270
	1.6\%	177
AATTTTTTTTATAGCctrtc-cctretrccaatca	1.4\%	155
Aattrttrtanaccittc-cctrcttccaitcactica	1.3\%	139
	1.2\%	131
	1.2\%	128
	1.0\%	112
Aatrtittrtataccirtccctrcitccantcactan	0.9\%	102
Aattrttrtanaccittc--cctrectcccattcagt	0.8\%	93
Aattrttrtanaccittc--cctrectccaatcagtc	0.8\%	93
	0.8\%	90
	0.7\%	82
АатттTтTTTATAGCcrttccctrcitccgattcactcat	0.6\%	71
	0.6\%	68
	0.6\%	67
	0.6\%	62
аиттTTTTTTATAGCctrtccctratrccantcagtaat	0.5\%	60
	0.5\%	55
	0.5\%	54
	0.4\%	48
	0.4\%	47
	0.4\%	45
	0.4\%	43
	0.4\%	39
	0.3\%	36
Aatrtittrtataccirtccctratrccantcactan	0.3\%	36
Aatrttrttrataccrttccctratrccantcactan	0.3\%	36
	0.3\%	36
...		
	86.4\%	9547

Figure 7: Mutation rate and frameshift classification plots for sample Edited_Sample_2 region Target_2. Left: The cumulative fraction of mutations at each position of the target region is shown.Right: The proportion of frameshift and in-frame mutations, as well as of mutations outside of coding region(s) is shown.

bold Substitutions

Insertions

Deletions
--- Predicted cleavage position

Figure 8: Alleles around cutsite for sample Edited_Sample_2 region Target_2. Please note that only alleles with a frequency of at least 0.2% and at most 50 alleles are shown.

1.2.2.3 Control_Sample

Associated control: none
Table 8: Edited alleles frequency table for sample Control_Sample region Target_1. Aligned Sequence: The observed read sequence, aligned to the reference. Reference Sequence: The reference sequence. \%Reads: The fraction of reads with same sequence. \#Reads: The number of reads with the same sequence. Please note: All alleles with variants that are close to the expected cut-site are listed here. However, only the 30 most frequent alleles are listed here. The full list of alleles is delivered as a separate file.

Figure 9: Mutation rate and frameshift classification plots for sample Control_Sample region Target_1. Left: The cumulative fraction of mutations at each position of the target region is shown.Right: The proportion of frameshift and in-frame mutations, as well as of mutations outside of coding region(s) is shown.
bold Substitutions
\square Insertions
Deletions
--- Predicted cleavage position
A A T TTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT-Reference
A A T T T T T T T TA TA GC C T T T GIC C T T G T T C C G A T TCA GTCAT-97.20\% (8649 reads)
Figure 10: Alleles around cutsite for sample Control_Sample region Target_1. Please note that only alleles with a frequency of at least 0.2% and at most 50 alleles are shown.

Table 9: Edited alleles frequency table for sample Control_Sample region Target_2. Aligned Sequence: The observed read sequence, aligned to the reference. Reference Sequence: The reference sequence. \%Reads: The fraction of reads with same sequence. \#Reads: The number of reads with the same sequence. Please note: All alleles with variants that are close to the expected cut-site are listed here. However, only the 30 most frequent alleles are listed here. The full list of alleles is delivered as a separate file.

Target: Target_2

Figure 11: Mutation rate and frameshift classification plots for sample Control_Sample region
Target_2. Left: The cumulative fraction of mutations at each position of the target region is shown.Right: The proportion of frameshift and in-frame mutations, as well as of mutations outside of coding region(s) is shown.
bold Substitutions
\square Insertions
Deletions
--- Predicted cleavage position
A ATTTTTTTTATAGCCTTTGCCTTGTTCCGATTCAGTCAT-Reference
A A T T T T T T T TA TA GC C T T T GIC C T T G T T C C G A T T C A G T C A T-97. 68% (9696 reads)

Figure 12: Alleles around cutsite for sample Control_Sample region Target_2. Please note that only alleles with a frequency of at least 0.2% and at most 50 alleles are shown.

1.2.3 FASTQ Read Statistics

No	Replicate	Read Pairs	Yield (Kbp)	\%Q30	Mean Q
1	Control_Sample	20,000	12,000	88.62	35.20
2	Edited_Sample_1	20,000	12,000	84.13	34.11
3	Edited_Sample_2	20,000	12,000	83.03	33.82
	Total/Average	$\mathbf{6 0 , 0 0 0}$	$\mathbf{3 6 , 0 0 0}$	$\mathbf{8 5 . 2 6}$	$\mathbf{3 4 . 3 8}$

Table 10: FASTQ processing results.

Remarks:

- All reads are passed filter, i.e. reads have passed the default Illumina filter procedure (chastity filter).
- "Yield (Kbp)": number of bases called in kilobases.
- "\%Q30": represents the percentage of bases with a quality score of at least 30 (inferred base call accuracy of 99.9%). The Q-score is a prediction of the probability of a wrong base call.

1.2.4 Preprocessing and Mapping

Table 11: Preprocessing and mapping results. Replicate: Replicate name, see table 1 or 2. Raw reads: The number of unmodified (raw) reads that went into the analysis. Merged reads: The number of reads remaining after the preprocessing step, and percent of raw reads. On-target reads: The numer of reads that were mapped to any target region, and percent of preprocessed reads.

No	Replicate	Raw reads	Merged reads	On-target reads
1	Control_Sample	40,000	$38,692(96.7 \%)$	$37,656(99.2 \%)$
2	Edited_Sample_1	40,000	$37,782(94.5 \%)$	$35,702(97.7 \%)$
3	Edited_Sample_2	40,000	$37,908(94.8 \%)$	$35,282(96.9 \%)$

No Replicate
1 Control_Sample
3 Edited Sample 2

Raw reads
40,000
40,000

Merged reads On-target reads
38,692 (96.7\%) 37,656 (99.2\%)
37,908 (94.8\%) 35,282 (96.9\%)

1.2.5 Coverage Statistics

Table 12: Coverage statistics for each target region. Replicate: Replicate name, see table 1 or 2. Donwsampled reads: Number of remaining reads after downsampling, and percent of on-target reads. Coverage median: Median coverage of the target after downsampling. Percent covered: Proportion of target region that is covered by reads.

Target: Target_1

No	Replicate
1	Control_Sample
2	Edited_Sample_1
3	Edited_Sample_2

Target: Target_2

No Replicate

1 Control_Sample
2 Edited_Sample_1
3 Edited_Sample_2
$\left.\begin{array}{rrr}\text { Downsampled } \\ \text { reads }\end{array} \begin{array}{r}\text { Coverage } \\ \text { median }\end{array} \begin{array}{r}\text { Percent } \\ \text { covered }\end{array}\right\}$

Downsampled		
reads	Coverage median	Percent covered
$9,928(100.0 \%)$	9,926	100.0%
$12,063(100.0 \%)$	10,923	100.0%
$11,974(100.0 \%)$	10,561	100.0%

1.3 Methods

The Eurofins Genomics CRISPR NHEJ analysis pipeline performs the following operations:

1. Clipping of reads using Trimmomatic (v 0.36). Adapter sequences are removed from read sequences. If less than 40 bp of read sequence remains, the read is removed. If a read is removed, its mate is removed as well.
2. Paired-end reads were merged (assembled) using the software FLASH2 (v 2.2.00) to obtain a single, longer read that covers the full target region. A minimal overlap of 10 bp and a maximum of 15% mismatch rate in the overlap region were required.
3. Mapping of preprocessed reads using BWA MEM (v 0.7.15). Reads are mapped to the reference sequences with default alignment parameters.
4. Aligned reads are filtered and downsampled. Reads aligning outside of the expected target regions are removed. Reads with ambiguous alignments (mapping quality of 1) are removed. If more than 20000 reads were aligned to a target region, the reads aligning to this target region are randomly downsampled to roughly 20000.
5. Identification and quantification of sequence alleles using CRISPResso (v 1.0.13). Only mutations within a 5bp window around the expectd cutsite are considered as editing mutations.

1.4 Deliverables

Table 14: List of delivered files, formats, and recommended programs to access the data.

File	Format	Program To Open File
*_Report.pdf	PDF	PDF reader
STEP.metrics.csv	CSV	Spreadsheet Editor
REPLICATE_[1\|2].fastq.gz	FASTQ	none
REPLICATE.extendedFrags.fastq.gz	FASTQ	none
REPLICATE.bam	BAM	IGV, Tablet
REPLICATE.bam.bai	BAI	none

Table 15: Short descriptions of file contents.

File	Description
*_Report.pdf	This report. Contains the unprocessed raw read data in FASTQ format. REPLICATE_[1\|2].fastq.gz
These files were the starting point of the analysis.	
REPLICATE.extendedFrags.fastq.gz	Contains the assembled reads in FASTQ format. These files were used for mapping. Contains preprocessed, mapped reads in BAM format. These files were downsampled and then used for variant calling.
	The index file associated with REPLICATE.bam
REPLICATE.bam	Lists observed allele sequences aligned to reference se- quence and associated quantifications.
Alleles_frequency_table.txt	Same as above, but restricted to a 40bp window around the expected cut site.
Alleles_frequency_table_around_-	
cut_site_[ACGT].txt	This file summarizes the editing efficiency per sample and efficiency.table.csv
target region (sum of alternative allele frequencies).	
This file contains various alignment metrics.	
alignment.metrics.csv	This file contains various coverage metrics.
coverage.metrics.csv	This file contains various coverage metrics.
merging.metrics.csv	

Table 16: Descriptions of file formats.

Format	Description
FASTQ	A text-based format for storing both a biological sequence and its corresponding quality scores. Compressed binary version of the Sequence Align- ment/Mapping (SAM) format, a compact and index-able representation of nucleotide sequence alignments. Comma separated table style text file. It can be imported into spreadsheet editors like MS OFFICE Excel.
CSV	Tab separated table style text file. It can be imported into spreadsheet editors like MS OFFICE Excel. Text file of arbitrary style. It can be opened by any text editor. We recommend to use Notepad++.

Eurofins Genomics' products, services and applications reach the best quality and safety levels. They are carried out under strict QM and QA systems and comply with the following standards:

ISO 17025 Accredited analytical excellence
ISO 13485

Oligonucleotides according to medica devices standard

The gold standard to conduct non-clinical safety studies

Pharmacogenomic services for clinical studies
Products and testing according to pharma and biotech requirements

